ece204: add odes

This commit is contained in:
eggy
2023-11-20 16:01:05 -05:00
parent cb9e3e2308
commit 4252a734e2
3 changed files with 131 additions and 0 deletions

View File

@@ -225,6 +225,13 @@ Two boundary conditions are requred to solve the problem for all $t>0$ — that
- $u(x,0)=f(x),0\leq x\leq L$
- e.g., $u(0,t)=u(L,t)=0,t>0$
Thus the general solution is:
$$
\boxed{u(x,t)=\sum^\infty_{n=1}a_ne^{-\left(\frac{n\pi a}{L}\right)^2t}\sin(\frac{n\pi x}{L})} \\
f(x)=\sum^\infty_{n=1}a_n\sin(\frac{n\pi x}{L})
$$
### Periodicity
The **period** of a function is an increment that always returns the same value: $f(x+T)=f(x)$, and its **fundamental period** of a function is the smallest possible period.